Perceptive Evaluation for the Optimal Discounted Reward in Markov Decision Processes
نویسندگان
چکیده
We formulate a fuzzy perceptive model for Markov decision processes with discounted payoff in which the perception for transition probabilities is described by fuzzy sets. Our aim is to evaluate the optimal expected reward, which is called a fuzzy perceptive value, based on the perceptive analysis. It is characterized and calculated by a certain fuzzy relation. A machine maintenance problem is discussed as a numerical example.
منابع مشابه
Fuzzy optimality relation for perceptive MDPs - the average case
This paper is a sequel to Kurano et al [9], [10], in which the fuzzy perceptive models for optimal stopping or discounted Markov decision process is given. We proposed a method of computing the corresponding fuzzy perceptive values. Here, we deal with the average case for Markov decision processes with fuzzy perceptive transition matrices and characterize the optimal average expected reward, ca...
متن کاملFuzzy Perceptive Values for MDPs with Discounting
In this paper, we formulate the fuzzy perceptive model for discounted Markov decision processes in which the perception for transition probabilities is described by fuzzy sets. The optimal expected reward, called a fuzzy perceptive value, is characterized and calculated by a new fuzzy relation. As a numerical example, a machine maintenance problem is considered.
متن کاملFuzzy Optimality Equations for Perceptive MDPs
This paper is a sequel to Kurano et al [9], [10], in which the fuzzy perceptive models for optimal stopping or discounted Markov decision process are proposed and the methods of computing the corresponding fuzzy perceptive values are given. Here, we deal with the average case for Markov decisin processes with fuzzy perceptive transition matrices and characterize the optimal average expected rew...
متن کاملAccelerated decomposition techniques for large discounted Markov decision processes
Many hierarchical techniques to solve large Markov decision processes (MDPs) are based on the partition of the state space into strongly connected components (SCCs) that can be classified into some levels. In each level, smaller problems named restricted MDPs are solved, and then these partial solutions are combined to obtain the global solution. In this paper, we first propose a novel algorith...
متن کاملTotal Expected Discounted Reward MDPs: Existence of Optimal Policies
This article describes the results on the existence of optimal and nearly optimal policies for Markov Decision Processes (MDPs) with total expected discounted rewards. The problem of optimization of total expected discounted rewards for MDPs is also known under the name of discounted dynamic programming.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005